BLOGGER TEMPLATES AND TWITTER BACKGROUNDS

Cari Blog Ini

Memuat...

Rabu, 19 Mei 2010

pertanyaan/ Soal

Kelompok 1 : rahmat wiranata Ph
Apa penyebab zat aromatik memiliki ukuran kecil?

jawab:

kelompok 3 :


kelompok 4 :



kelopok 5 :
dwiana Fajriati : Bisakah kita membuat minyak bumi dari kadar belerang(imitasi)?
Tidak bisa, karena dalam minyak bumi , belerang masuk dalam zat pengotor yang harus dlakukan proses treating.

Minggu, 09 Mei 2010

komposisi senyawa Kimia dalam bidang sandang

SANDANG

Dari bahan hidrokarbon yang bisa dimanfaatkan untuk sandang adalah PTA (purified terephthalic acid) yang dibuat dari para-xylene dimana bahan dasarnya adalah kerosin (minyak tanah). Dari Kerosin ini semua bahannya dibentuk menjadi senyawa aromat, yaitu para-xylene. Rumus kimianya tau kan ? Bentuknya senyawa benzen (C6H6), tetapi ada dua gugus metil pada atom C1 dan C3 dari molekul benzen tersebut.

Senyawa hidrokarbon juga mulai digunakan untuk mengganti bahan alam seperti kapas, sutra, dan wall. Bahan pakaian sintetis harganya lebih murah dan dapat diproduksi secara besar-besaran dalam waktu singkat. Produk ini termasuk polimer yang dibuat dari berbagai senyawa hidrokarbon molekul kecil yang disebut monomer.
Proses pembuatan polyester

Proses pembuatan polyester

Kehalusan bahan yang terbuat dari serat poliester dipengaruhi oleh zat penambah (aditif) dalam proses pembuatan benang (saat mereaksikan PTA dengan metanol). Salah satu produsen PTA di Indonesia adalah di Pertamina Unit Pengolahan III . Sebetulnya ada polimer lain yang juga dibunakan untuk pembuatan serat sintetis yang lebih halus atau lembut lagi. Misal serat untuk bahan isi pembalut wanita. Polimer tersebut terbuat dari polietilen.

Poliester adalah suatu kategori polimer yang mengandung gugus fungsional ester dalam rantai utamanya. Meski terdapat banyak sekali poliester, istilah "poliester" merupakan sebagai sebuah bahan yang spesifik lebih sering merujuk pada polietilena tereftalat (PET). Poliester termasuk zat kimia yang alami, seperti yang kutin dari kulit ari tumbuhan, maupun zat kimia sintetis seperti polikarbonat dan polibutirat.

Kain dari poliester disebut-sebut terasa “tak alami” bila dibandingkan dengan kain tenunan yang sama dari serat alami (misalnya kapas dalam penggunaan tekstil). Namun kain poliester memiliki beberapa kelebihan seperti peningkatan ketahanan dari pengerutan. Akibatnya, serat poliester terkadang dipintal bersama-sama dengan serat alami untuk menghasilkan baju dengan sifat-sifat gabungan. Poliester juga digunakan untuk membuat botol, film, tarpaulin, kano, tampilan kristal cair, hologram, penyaring, saput (film) dielektrik untuk kondensator, penyekat saput buat kabel dan pita penyekat.

Poliester kristalin cair merupakan salah satu polimer kristalin cair yang digunakan industri yang pertama dan digunakan karena sifat mekanis dan ketahanan terhadap panasnya. Kelebihan itu penting dalam penggunaannya sebagai segel mampu kikis dalam mesin jet.

Poliester keras panas (thermosetting) digunakan sebagai bahan pengecoran, dan resin poliester chemosetting digunakan sebagai resin pelapis kaca serat dan dempul badan mobil yang non logam. Poliester tak jenuh yang diperkuat kaca serat banyak digunakan dalam bagian badan dari kapal pesiar serta mobil.

Poliester digunakan pula secara luas sebagai penghalus (finish) pada produk kayu berkualitas tinggi seperti gitar, piano, dan bagian dalam kendaraan / perahu pesiar. Perusahaan Burns London, Rolls-Royce, dan Sunseeker merupakan segelinter perusahaan yang memakai poliester untuk memperhalus produk-produk mereka. Sifat-sifat tiksotropi dari poliester yang bisa dipakai sebagai semprotan membuatnya ideal untuk digunakan pada kayu gelondongan bijian-terbuka, sebab mampu mengisi biji kayu dengan cepat, dengan ketebalan saput yang terbentuk dengan kuat per lapisan. Poliester yang diawetkan bisa diampelas dan dipoleskan ke produk akhir.
Sifat-sifat serat poliester
a. Sifat mekanis

Penyerapan energi plastik yang diperkuat dengan serat kimia: (uji benturan, pelentukan, dan tarik) Investigasi atas persyaratan praktis untuk mengukur penyerapan energi dari bahan-bahan gabungan (komposit), dan pengembangan metode yang cocok untuk melaksanakan pengukuran tersebut. Sejumlah metode uji dinamis untuk mengukur penyerapan energi dari berbagai lapisan, termasuk uji benturan pelentukan, uji benturan berulang-ulang, uji benturan tarikan, dan uji tumbukan pembengkokan. Didiskusikan pula ujian benturan pada lempengan berlapis. Penekanan khusus ditempatkan pada studi pada berbagai komposit yang diperkuat dengan sebuah serat kimia. Tak dapat dipungkiri bahwa ada hubungan antara penyerapan energi statis yang semu dari berbagai serat dan penyerapan energi dinamisnya komposit. Komposit berpoliester komersial dan serat poliamida memiliki penyerapan energi yang tertinggi, dimana piranti pengujian memiliki efek yang signifikan.
b. Sifat kimiawi

Poliester tidak diketahui memiliki sifat kimiawi
Sintesis

Sintesis poliester pada umumnya dicapai dengan reaksi polikondensasi. Rumus umum untuk reaksi dari sebuah diol dengan sebuah asam dikarboksilat adalah:

(n+1) R(OH)2 + n R´(COOH)2 ---> HO[ROOCR´COO]nROH + 2n H2O

Komposisi senyawa kimia dalam bahan sandang
T
ahukah anda, komponen senyawa kimia dari pakaian yang anda kenakan?. Pakaian dibuat dari bahan serat, serat pakaian dapat digolongkan menjadi serat alam (kapas dari tumbuhan, sutra, dan wol dari hewan), serat semisintetis (rayon), dan serat sintetis (poliamida dan poliester).
1. Serat alam
a. Kapas
Kapas berupa bulu atau serat yang diperoleh dari buah pohon kapas yang panjangnya sekitar 2-5 cm, dipisahkan dari bijinya dan hampir 90% mengandung senyawa selulosa. Kain katun merupakan kain dri serat kapas. Keuntungan kain tenunan dari bahan kapas adalah sifatnya yang empuk, daya serap terhadap zat warna baik, dapat berfungsi sebagai isolator panas, dan harganya lebih murah.

b. Sutra
Serat sutra diperoleh dari filimen (benang) kepompong ulat sutra. Kulit kepompong adalah sebuah lapisan yang terdiri atas filamen. Panjang filamen dari tiap kepompong adalah 1.000-14.000 m. Serat ini merupakan polimer serat protein yang komponen utamanya fibroin (terdapat dibagian dalam) dan yang mengelilinginya adalah sericin.

c. Wol
Wol merupakan serat protein yang mengandung kretinin, diperoleh dari bulu domba. Serat wol yang panjang cenderung kasar dan serat wol yang pendek cenderung halus. Serat wol memiliki mutu istimewa sehingga membuatnya menjadi serat yang amat berguna. Wol menyerap dan melepaskan uap air sehingga keadaannya sama dengan kelembapan udara. Wol lembut, tetapi kuat, dan tahan terhadap kotor, serta tidak mudah sobek. Kekuranganwol adalah mengerut karena panas, tekanan, dan lembap, juga akan menarik ngengat.

2. Serat semisintetis
a. Rayon
Rayon merupakan contoh serat semisintetis karena dibuat dengan proses kimia dengan bahan dasar alam, yaitu serat selulosa. Serat selulosa diperoleh dari kayu yang dihancurkan. Hasil pembuatan ini menghasilkan serat yang mirip sutra sehingga disebut sutra buatan. Hanya untuk membedakannya dengan sutra maka serat semisintetis ini dinamakan rayon.

b. Serat poliester
Pada tahun 1954, di Amerika Serikat Du-pont telah memperoleh paten atas produksi secara komersial poliester yang diberi nama Dacron. Serat poliester sintetis yang banyak dipergunakan adalah polyethylene terephthalate (PET) yang dibuat dari reaksi asam tereftalat dengan etilen glikol.
Serat poliester memiliki elastisitas yang tinggi dan stabilitas dimensinya baik sehingga cocok untuk bahan pakaian.

Dampak Pembakaran Bahan Bakar

-Dampak terhadap lingkungan

Dampak lingkungan yang ditimbulkan oleh sistem transportasi yang tidak "sustainable" dapat dibagi dalam 2 kelompok besar yaitu dampak terhadap lingkungan udara dan dampak terhadap lingkungan air.

Kualitas udara perkotaan sangat menurun akibat tingginya aktivitas transportasi. Dampak yang timbul meliputi meningkatnya konsentrasi pencemar konservatif yang meliputi: · Karbon monoksida (CO) · Oksida sulfur (SOx) · Oksida nitrogen (NOx) · Hidrokarbon (HC) · Timbal (Pb) · Ozon perkotaan (O3) · Partikulat (debu) Perubahan kualitas udara perkotaan telah diamati secara menerus di beberapa kota baik oleh Bapedalda maupun oleh BMG.

Secara tidak langsung, kegiatan transportasi akan memberikan dampak terhadap lingkungan air terutama melalui air buangan dari jalan raya. Air yang terbuang dari jalan raya, terutama terbawa oleh air hujan, akan mengandung bocoran bahan bakar dan juga larutan dari pencemar udara yang tercampur dengan air tersebut.

-Dampak terhadap kesehatan

Dampak terhadap kesehatan merupakan dampak lanjutan dari dampak terhadap lingkungan udara. Tingginya kadar timbal dalam udara perkotaan telah mengakibatkan tingginya kadar timbal dalam darah.

-Dampak terhadap ekonomi

Dampak terhadap ekonomi lebih banyak merupakan dampak turunan terutama dari adanya dampak terhadap kesehatan. Dampak terhadap ekonomi akan semakin bertambah dengan terjadinya kemacetan dan tingginya waktu yang dihabiskan dalam perjalanan sehari-hari. Akibat dari tingginya kemacetan dan waktu yang dihabiskan di perjalanan, maka waktu kerja semakin menurun dan akibatnya produktivitas juga berkurang.
Polusi Udara Akibat Pembakaran Bahan Bakar Fosil

1. Sumber Bahan Pencemaran

a. Pembakaran Tidak Sempurna
Menghasilkan asap yang mengandung gas karbon monoksida (CO), partikel karbon (jelaga), dan sisa bahan bakar (hidroksida).
b. Pengotor dalam Bahan Bakar
Bahan bakar fosil mengandung sedikit belerang yang akan menghasilkan oksida belerang (SO2 atau SO3).
c. Bahan Aditif (Tambahan) dalam Bahan Bakar
Bensin yang ditambahi tetraethyllead (TEL) yang punya rumus molekul Pb(C2H5)4 akan menghasilkan partikel timah hitam berupa PbBr2.


2. Asap Buang Kendaraan Bermotor

a. Gas Karbon Dioksida (CO2)
Sebenarnya, gas karbon dioksida tidak berbahaya. Tetapi, gas karbon dioksida tergolong gas rumah kaca, sehingga peningkatan kadar gas karbon dioksida di udara dapat mengakibatkan peningkatan suhu permukaan bumi yang disebut pemanasan global.
b. Gas Karbon Monoksida (CO)
Gas karbon monoksida tidak berwarna dan berbau, sehingga kehadirannya tidak diketahui. Gas karbon monoksida bersifat racun, dapat menimbulkan rasa sakit pada mata, saluran pernapasan, dan paru-paru. Bila masuk ke dalam darah melalui pernapasan, gas karbon monoksida bereaksi dengan hemoglobin darah, membentuk karboksihemoglobin (COHb).
CO + Hb → COHb
Hemoglobin seharusnya bereaksi dengan oksigen menjadi oksihemoglobin (O2Hb) dan dibawa ke sel-sel jaringan tubuh yang memerlukan.
O2 + Hb → O2Hb
Namun, afinitas gas karbon monoksida terhadap hemoglobin sekitar 300 kali lebih besar daripada oksigen. Bahkan hemoglobin yang telah mengikat oksigen dapat diserang oleh gas karbon monoksida.
CO + O2Hb → COHb + O2
Jadi, gas karbon monoksida menghalangi fungsi vital hemoglobin untuk membawa oksigen bagi tubuh.
Cara mencegah peningkatan gas karbon monoksida di udara adalah dengan mengurangi penggunaan kendaraan bermotor dan pemasangan pengubah katalitik pada knalpot.
c. Oksida Belerang (SO2 dan SO3)
Belerang dioksida yang terhisap pernapasan bereaksi dengan air di dalam saluran pernapasan, membentuk asam sulfit yang dapat merusak jaringan dan menimbulkan rasa sakit. Bila SO3 terhisap, yang terbentuk adalah asam sulfat (lebih berbahaya). Oksida belerang dapat larut dalam air hujan dan menyebabkan terjadi hujan asam.
d. Oksida Nitrogen (NO dan NO2)
Campuran NO dan NO2 sebagai pencemar udara biasa ditandai dengan lambang NOx. Ambang batas NOx di udara adalah 0,05 ppm. NOx di udara tidak beracun (secara langsung) pada manusia, tetapi NOx ini bereaksi dengan bahan-bahan pencemar lain dan menimbulkan fenomena asbut (asap-kabut). Asbut menyebabkan berkurangnya daya pandang, iritasi pada mata dan saluran pernapasan, menjadikan tanaman layu, dan menurunkan kualitas materi.
e. Partikel Timah Hitam
Senyawa timbel dari udara dapat mengendap pada tanaman sehingga bahan makanan terkontaminasi. Keracunan timbel yang ringan dapat menyebabkan gejala keracunan timbel, seperti sakit kepala, mudah teriritasi, mudah lelah, dan depresi. Keracunan yang lebih hebat menyebabkan kerusakan otak, ginjal, dan hati.


3. Pengubah Katalitik

Salah satu cara untuk mengurangi bahan pencemar yang berasal dari asap kendaraan bermotor adalah memasang pengubah katalitik pada knalpot kendaraan. Pengubah katalitik berupa silinder dari baja tahan karat yang berisi suatu struktur berbentuk sarang lebah yang dilapisi katalis (biasanya platina). Pada separuh bagian pertama dari pengubah katalitik, karbon monoksida bereaksi dengan nitrogen monoksida membentuk karbon dioksida dan gas nitrogen.
katalis
2CO(g) + 2NO(g) → 2CO2(g) + N2(g)
gas-gas racun gas tak beracun
Pada bagian berikutnya, hidrokarbon dan karbon monoksida (jika masih ada) dioksidasi membentuk karbon dioksida dan uap air.
Pengubah katalitik hanya dapat berfungsi jika kendaraan menggunakan bensin tanpa timbel.


4. Efek Rumah Kaca

Berbagai gas dalam atmosfer, seperti karbon dioksida, uap air, metana, dan senyawa keluarga CFC, berlaku seperti kaca yang melewatkan sinar tampak dan ultraviolet tetapi menahan radiasi inframerah. Oleh karena itu, sebagian besar dari sinar matahari dapat mencapai permukaan bumi dan menghangatkan atmosfer dan permukaan bumi. Tetapi radiasi panas yang dipancarkan permukaan bumi akan terperangkap karena diserap oleh gas-gas rumah kaca.
Efek rumah kaca berfungsi sebagai selimut yang menjaga suhu permukaan bumi rata-rata 15˚C. Tanpa karbon dioksida dan uap air di atmosfer, suhu rata-rata permukaan bumi diperkirakan sekitar –25˚C. Jadi, jelaslah bahwa efek rumah kaca sangat penting dalam menentukan kehidupan di bumi. Akan tetapi, peningkatan kadar dari gas-gas rumah kaca dapat menyebabkan suhu permukaan bumi menjadi terlalu tinggi sehingga dapat mneyebabkan berbagai macam kerugian.


5. Hujan Asam

Air hujan biasanya sedikit bersifat asam (pH sekitar 5,7). Hal itu terjadi karena air hujan tersebut melarutkan gas karbon dioksida yang terdapat dalam udara, membentuk asam karbonat.
CO2(g) + H2O(l) → H2CO3(aq)
asam karbonat
Air hujan dengan pH kurang dari 5,7 disebut hujan asam.
a. Penyebab Hujan Asam
SO2(g) + H2O(l) → H2SO3(aq)
asam sulfit
SO3(g) + H2O(l) → H2SO4(aq)
asam sulfat
2NO2(g) + H2O(l) → HNO2(aq) + HNO3(aq)
asam nitrit asam nitrat
b. Masalah yang Ditimbulkan Hujan Asam
- Kerusakan Hutan
- Kematian Biota Air
- Kerusakan Bangunan
Bahan bangunan sedikit-banyak mengandung kalsuim karbonat. Kalsium karbonat larut dalam asam, maka dapat bereaksi.
CaCO3(s) + 2HNO3(aq) → Ca(NO3)2(aq) + H2O(l) + CO2(g)
c. Cara Menangani Hujan Asam
- Menetralkan asam
- Mengurangi emisi SO2
- Mengurangi emisi oksida nitrogen

Sabtu, 08 Mei 2010

suka duka Buat blog ini

uki said :

suka dukanya hm hm *jangan ada pengurangan nilai*
suka : Lumayan lah buat namabh-nambah pengetahuan orang banyak

duka : napa aku harus buat blog minyak bumi?. melenceng dari image aku sebagai Anime Lover heheheheheheh only that :)

nhunu says :
suka dukaa ? BANYAK kkak :D
sukanyaa : tambahh ilmuu , supaya tau cara edit blog :( , biar dapat nilai bagus :D


dukaa : se relaa menghabiskan uang jajan demi membuat blog ini bersama ukii :(
but tak apalaah . :D . kami kan kelompok yang kompak .
KELOMPOK 2 getoo :*

Jumat, 07 Mei 2010

Komponen Minyak bumi

Minyak bumi (bahasa Inggris: petroleum, dari bahasa Latin petrus – karang dan oleum – minyak), dijuluki juga sebagai emas hitam, adalah cairan kental, coklat gelap, atau kehijauan yang mudah terbakar, yang berada di lapisan atas dari beberapa area di kerak Bumi. Minyak bumi terdiri dari campuran kompleks dari berbagai hidrokarbon, sebagian besar seri alkana, tetapi bervariasi dalam penampilan, komposisi, dan kemurniannya.

Komposisi

Komponen kimia dari minyak bumi dipisahkan oleh proses distilasi, yang kemudian, setelah diolah lagi, menjadi minyak tanah, bensin, lilin, aspal, dll.

Minyak bumi terdiri dari hidrokarbon, senyawaan hidrogen dan karbon.

Empat alkana teringan- CH4 (metana), C2H6 (etana), C3H8 (propana), dan C4H10 (butana) - semuanya adalah gas yang mendidih pada -161.6 °C, -88.6 °C, -42 °C, dan -0.5 °C, berturut-turut (-258.9°, -127.5°, -43.6°, dan +31.1° F).

Rantai dalam wilayah C5-7 semuanya ringan, dan mudah menguap, nafta jernih. Senyawaan tersebut digunakan sebagai pelarut, cairan pencuci kering (dry clean), dan produk cepat-kering lainnya. Rantai dari C6H14 sampai C12H26 dicampur bersama dan digunakan untuk bensin. Minyak tanah terbuat dari rantai di wilayah C10

Minyak pelumas dan gemuk setengah-padat (termasuk Vaseline®) berada di antara C16 sampai ke C20.

Rantai di atas C20 berwujud padat, dimulai dari "lilin, kemudian tar, dan bitumen aspal.

Titik pendidihan dalam tekanan atmosfer fraksi distilasi dalam derajat Celcius:

Beberapa ilmuwan menyatakan bahwa minyak adalah zat abiotik, yang berarti zat ini tidak berasal dari fosil tetapi berasal dari zat anorganik yang dihasilkan secara alami dalam perut bumi. Namun, pandangan ini diragukan dalam lingkungan ilmiah.



KOMPOSISI PENYUSUN MINYAK BUMI dan GAS ALAM

Minyak bumi dan gas alam adalah campuran kompleks hidrokarbon dan senyawa-senyawa organik lain. Komponen hidrokarbon adalah komponen yang paling banyak terkandung di dalam minyaak bumi dan gas alam. Gas alam terdiri dari alkana suku rendah, yaitu metana, etana, propana, dan butana. Selain alkana juga terdapat berbagai gas lain seperti karbondioksida (CO2) dan hidrogen sulfida (H2S), beberapa sumur gas juga mengandung helium.

Sedangkan hidrokarbon yang terkandung dalam minyak bumi terutama adalah alkana dan sikloalkana, senyawa lain yang terkandung didalam minyak bumi diantaranya adalah Sulfur, Oksigen, Nitrogen dan senyawa-senyawa yang mengandung konstituen logam terutama Nikel, Besi dan Tembaga. Komposisi minyak bumi sangat bervariasi dari satu sumur ke sumur lainnya dan dari daerah ke daerah lainnya.

Perbandingan unsur-unsur yang terdapat dalam minyak bumi sangat bervariasi. Berdasarkan hasil analisa, diperoleh data sebagai berikut :

* Karbon : 83,0-87,0 %
* Hidrogen : 10,0-14,0 %
* Nitrogen : 0,1-2,0 %
* Oksigen : 0,05-1,5 %
* Sulfur : 0,05-6,0 %

Struktur hidrokarbon yang ditemukan dalam minyak mentah:
1. Alkana (parafin) panah CnH2n + 2 , alkana ini memiliki rantai lurus dan bercabang, fraksi ini merupakan yang terbesar di dalam minyak mentah.
2. Sikloalkana (napten) panah CnH2n , Sikloalkana ada yang memiliki cincin 5 (lima) yaitu siklopentana ataupun cincin 6 (enam) yaitu sikloheksana.

siklo pentana

siklopentana


siklo heksan

sikloheksana

3. Aromatik panah CnH2n -6

benzen

aromatik memiliki cincin 6

Aromatik hanya terdapat dalam jumlah kecil, tetapi sangat diperlukan dalam bensin karena :
- Memiliki harga anti knock yang tinggi
- Stabilitas penyimpanan yang baik
- Dan kegunaannya yang lain sebagai bahan bakar (fuels)
Proporsi dari ketiga tipe hidrokarbon sangat tergantung pada sumber dari minyak bumi. Pada umumnya alkana merupakan hidrokarbon yang terbanyak tetapi kadang-kadang (disebut sebagai crude napthenic) mengandung sikloalkana sebagai komponen yang terbesar, sedangkan aromatik selalu merupakan komponen yang paling sedikit.

Zat-Zat Pengotor yang sering terdapat dalam minyak bumi:

1. Senyawaan Sulfur
Crude oil yang densitynya lebih tinggi mempunyai kandungan Sulfur yang lebih tinggu pula. Keberadaan Sulfur dalam minyak bumi sering banyak menimbulkan akibat, misalnya dalam gasoline dapat menyebabkan korosi (khususnya dalam keadaan dingin atau berair), karena terbentuknya asam yang dihasilkan dari oksida sulfur (sebagai hasil pembakaran gasoline) dan air.
2. Senyawaan Oksigen
Kandungan total oksigen dalam minyak bumi adalah kurang dari 2 % dan menaik dengan naiknya titik didih fraksi. Kandungan oksigen bisa menaik apabila produk itu lama berhubungan dengan udara. Oksigen dalam minyak bumi berada dalam bentuk ikatan sebagai asam karboksilat, keton, ester, eter, anhidrida, senyawa monosiklo dan disiklo dan phenol. Sebagai asam karboksilat berupa asam Naphthenat (asam alisiklik) dan asam alifatik.
3. Senyawaan Nitrogen
Umumnya kandungan nitrogen dalam minyak bumi sangat rendah, yaitu 0,1-0,9 %. Kandungan tertinggi terdapat pada tipe Asphalitik. Nitrogen mempunyai sifat racun terhadap katalis dan dapat membentuk gum / getah pada fuel oil. Kandungan nitrogen terbanyak terdapat pada fraksi titik didih tinggi. Nitrogen klas dasar yang mempunyai berat molekul yang relatif rendah dapat diekstrak dengan asam mineral encer, sedangkan yang mempunyai berat molekul yang tinggi tidak dapat diekstrak dengan asam mineral encer.
4. Konstituen Metalik
Logam-logam seperti besi, tembaga, terutama nikel dan vanadium pada proses catalytic cracking mempengaruhi aktifitas katalis, sebab dapat menurunkan produk gasoline, menghasilkan banyak gas dan pembentukkan coke. Pada power generator temperatur tinggi, misalnya oil-fired gas turbine, adanya konstituen logam terutama vanadium dapat membentuk kerak pada rotor turbine. Abu yang dihasilkan dari pembakaran fuel yang mengandung natrium dan terutama vanadium dapat bereaksi dengan refactory furnace (bata tahan api), menyebabkan turunnya titik lebur campuran sehingga merusakkan refractory itu.

Komponen Minyak Bumi

Minyak bumi adalah campuran komplek hidrokarbon plus senyawaan organik dari Sulfur, Oksigen, Nitrogen dan senyawa-senyawa yang mengandung konstituen logam terutama Nikel, Besi dan Tembaga.

Minyak bumi sendiri bukan merupakan bahan yang uniform, melainkan berkomposisi yang sangat bervariasi, tergantung pada lokasi, umur lapangan minyak dan juga kedalaman sumur.

Dalam minyak bumi parafinik ringan mengandung hidrokarbon tidak kurang dari 97 % sedangkan dalam jenis asphaltik berat paling rendah 50 %.

Komponen Hidrokarbon

Perbandingan unsur-unsur yang terdapat dalam minyak bumi sangat bervariasi. Berdasarkan atas hasil analisa, diperoleh data sebagai berikut :

* Karbon : 83,0-87,0 %
* Hidrogen : 10,0-14,0 %
* Nitrogen : 0,1-2,0 %
* Oksigen : 0,05-1,5 %
* Sulfur : 0,05-6,0 %

Komponen hidrokarbon dalam minyak bumi diklasifikasikan atas tiga golongan, yaitu :

* golongan parafinik
* golongan naphthenik
* golongan aromatik
* sedangkan golongan olefinik umumnya tidak ditemukan dalam crude oil, demikian juga hidrokarbon asetilenik sangat jarang.

Crude oil mengandung sejumlah senyawaan non hidrokarbon, terutama senyawaan Sulfur, senyawaan Nitrogen, senyawaan Oksigen, senyawaan Organo Metalik (dalam jumlah kecil/trace sebagai larutan) dan garam-garam anorganik (sebagai suspensi koloidal).

1. Senyawaan Sulfur

Crude oil yang densitynya lebih tinggi mempunyai kandungan Sulfur yang lebih tinggu pula. Keberadaan Sulfur dalam minyak bumi sering banyak menimbulkan akibat, misalnya dalam gasoline dapat menyebabkan korosi (khususnya dalam keadaan dingin atau berair), karena terbentuknya asam yang dihasilkan dari oksida sulfur (sebagai hasil pembakaran gasoline) dan air.

1. Senyawaan Oksigen

Kandungan total oksigen dalam minyak bumi adalah kurang dari 2 % dan menaik dengan naiknya titik didih fraksi. Kandungan oksigen bisa menaik apabila produk itu lama berhubungan dengan udara. Oksigen dalam minyak bumi berada dalam bentuk ikatan sebagai asam karboksilat, keton, ester, eter, anhidrida, senyawa monosiklo dan disiklo dan phenol. Sebagai asam karboksilat berupa asam Naphthenat (asam alisiklik) dan asam alifatik.

1. Senyawaan Nitrogen

Umumnya kandungan nitrogen dalam minyak bumi sangat rendah, yaitu 0,1-0,9 %. Kandungan tertinggi terdapat pada tipe Asphalitik. Nitrogen mempunyai sifat racun terhadap katalis dan dapat membentuk gum / getah pada fuel oil. Kandungan nitrogen terbanyak terdapat pada fraksi titik didih tinggi. Nitrogen klas dasar yang mempunyai berat molekul yang relatif rendah dapat diekstrak dengan asam mineral encer, sedangkan yang mempunyai berat molekul yang tinggi tidak dapat diekstrak dengan asam mineral encer.

1. Konstituen Metalik

Logam-logam seperti besi, tembaga, terutama nikel dan vanadium pada proses catalytic cracking mempengaruhi aktifitas katalis, sebab dapat menurunkan produk gasoline, menghasilkan banyak gas dan pembentukkan coke. Pada power generator temperatur tinggi, misalnya oil-fired gas turbine, adanya konstituen logam terutama vanadium dapat membentuk kerak pada rotor turbine. Abu yang dihasilkan dari pembakaran fuel yang mengandung natrium dan terutama vanadium dapat bereaksi dengan refactory furnace (bata tahan api), menyebabkan turunnya titik lebur campuran sehingga merusakkan refractory itu.

Agar dapat diolah menjadi produk-produknya, minyak bumi dari sumur diangkut ke Kilang menggunakan kapal, pipa, mobil tanki atau kereta api. Didalam Kilang, minyak bumi diolah menjadi produk yang kita kenal secara fisika berdasarkan trayek titik didihnya (distilasi), dimana gas berada pada puncak kolom fraksinasi dan residu (aspal) berada pada dasar kolom fraksinasi.

Setiap trayek titik didih disebut “Fraksi”, misal :

0-50°C : Gas

50-85°C : Gasoline

85-105°C : Kerosin

105-135°C : Solar

> 135°C : Residu (Umpan proses lebih lanjut)

Jadi yang namanya minyak bumi atau sering juga disebut crude oil adalah merupakan campuran dari ratusan jenis hidrokarbon dari rentang yang paling kecil, seperti metan, yang memiliki satu atom karbon sampai dengan jenis hidrokarbon yang paling besar yang mengandung 200 atom karbon bahkan lebih.

Secara garis besar minyak bumi dikelompokkan berdasarkan komposisi kimianya menjadi empat jenis, yaitu :

1. Parafin
2. Olefin
3. Naften
4. Aromat

Tetapi karena di alam bisa dikatakan tidak pernah ditemukan minnyak bumi dalam bentuk olefin, maka minyak bumi kemudian dikelompokkan menjadi tiga jenis saja, yaitu Parafin, Naften dan Aromat.

Kandungan utama dari campuran hidrokarbon ini adalah parafin atau senyawa isomernya. Isomer sendiri adalah bentuk lain dari suatu senyawa hidrokarbon yang memiliki rumus kimia yang sama. Misal pada normal-butana pada gambar berikut memiliki isomer 2-metil propana, atau kadang disebut juga iso-butana. Keduanya memiliki rumus kimia yang sama, yaitu C4H10 tetapi memiliki rumus bangun yang berbeda seperti tampak pada gambar.

Jika atom karbon (C) dinotasikan sebagai bola berwarna hitam dan atom hidrogen (H) dinotasikan sebagai bola berwarna merah maka gambar dari normal-butan dan iso-butan akan tampak seperti gambar berikut :

Senyawa hidrokarbon ‘normal’ sering juga disebut sebagai senyawa hidrokarbon rantai lurus, sedangkan senyawa isomernya atau ‘iso’ sering juga disebut sebagai senyawa hidrokarbon rantai cabang. Keduanya merupakan jenis minyak bumi jenis parafin .

Sedangkan sisa kandungan hidrokarbon lainnya dalam minyak bumi adalah senyawa siklo-parafin yang disebut juga naften dan/atau senyawa aromat . Berikut adalah contoh dari siklo-parafin dan aromat.

‘Keluarga hidrokarbon’ terebut diatas disebut homologis, karena sebagian besar kandungan yang ada dalam minyak bumi tersebut dapat dipisahkan kedalam beberapa jenis kemurnian untuk keperluan komersial. Secara umum, di dalam kilang minyak bumi, pemisahan perbandingan kemurnian dilakukan terhadap hidrokarbon yang memiliki kandungan karbon yang lebih kecil dari C7. Pada umumnya kandungan tersebut dapat dipisahkan dan diidentifikasi, tetapi hanya untuk keperluan di laboratorium.

Campuran siklo parafin dan aromat dalam rantai hidrokarbon panjang dalam minyak bumi membuat minyak bumi tersebut digolongkan menjadi minyak bumi jenis aspaltin .

Minyak bumi di alam tidak pernah terdapat dalam bentuk parafin murni maupun aspaltin murni, tetapi selalu dalam bentuk campuran antara parafin dan aspaltin. Pengelompokan minyak bumi menjadi minyak bumi jenis parafin dan minyak bumi jenis aspaltin berdasarkan banyak atau dominasi minyak parafin atau aspaltin dalam minyak bumi. Artinya minyak bumi dikatakan jenis parafin jika senyawa parafinnya lebih dominan dibandingkan aromat dan/atau siklo parafinnya. Begitu juga sebaliknya.

Dalam skala industri, produk dari minyak bumi dikelompokkan berdasarkan rentang titik didihnya, atau berdasarkan trayek titik didihnya. Pengelompokan produk berdasarkan titik didih ini lebih sering dilakukan dibandingkan pengelompokan berdasarkan komposisinya.

Minyak bumi tidak seluruhnya terdiri dari hidrokarbon murni. Dalam minyak bumi terdapat juga zat pengotor ( impurities ) berupa sulfur (belerang), nitrogen dan logam. Pada umumnya zat pengotor yang banyak terdapat dalam minyak bumi adalah senyawa sulfur organik yang disebut merkaptan. Merkaptan ini mirip dengan hidrokarbon pada umumnya, tetapi ada penambahan satu atau lebih atom sulfur dalam molekulnya.

Senyawa sulfur yang lebih kompleks dalam minyak bumi terdapat dalam bentuk tiofen dan disulfida. Tiofen dan disulfida ini banyak terdapat dalam rantai hidrokarbon panjang atau pada produk distilat pertengahan (middle distillate).

Selain itu zat pengotor lainnya yang terdapat dalam minyak bumi adalah berupa senyawa halogen organik, terutama klorida, dan logam organik, yaitu natrium (Na), Vanadium (V) dan nikel (Ni).

Titik didih minyak bumi parafin dan aspaltin tidak dapat ditentukan secara pasti, karena sangat bervariasi, tergantung bagaimana komposisi jumlah dari rantai hidrokarbonnya. Jika minyak bumi tersebut banyak mengandung hidrokarbon rantai pendek dimana memiliki jumlah atom karbon lebih sedikit maka titik didihnya lebih rendah, sedangkan jika memiliki hidrokarbon rantai panjang dimana memiliki jumlah atom karbon lebih banyak maka titik didihnya lebih tinggi.
Minyak bumi hasileksplorasi (peengeboran) masih berupa minyak mentah atau crude oil.Minyak mentah ini mengandung berbagai zat kimia berwujud gas,cair,padat.Komponen utama minyak bumi adalah hidrokarbon,baik alifatikalisiklik,maupun aromatic.kadar unsur karbon dalam minyak bumi dapat mencapai 80%-85%,sedangkan sisanya merupakan campuran unsur hydrogen danunsur-unsur lain.Misalnya,nitrogen (0-0,5%),belerang (0-6%),dan oksigen (0-3,5%).Minyak bumi yang berasal dari Indonesia lebih unggul dibandingkan minyak bumi yang berasal dari Negara-negara timur tengah karena memiliki kadar belerang yang lebih rendah.Daerah penambangan minyak bumi di Indonesia diantaranya di daerah cilacap,balongan,Balikpapan,Dumai dan Sorong.
1.Senyawa Hidrokarbon Alifatik Rantai Lurus
Senyawa hidrokarbon alifatik rantai lurus biasa disebut alkana atau normal paraffin.Senyawa ini banyak terdapat dalam gas alam dan minyak bumi yang memiliki rantai karbon pendek contoh: CH3 - CH3 dan CH3 – CH2 - CH3
etena propana

2.Senyawa Hidrokarbon Bentuk Siklik
Senyawa hidrokarbon siklik merupakan senyawa hidrokarbon golongan sikloalkana atau sikloparafin.Senyawa hidrokarbon ini memiliki rumus milekul sama dengan alkena (CnH2n),
Tetapi tidak memiliki ikatan rangkap dua (hanya memiliki ikatan tunggal seperti alkana) dan membentuk struktur cincin.
H2C – CH2 CH2 CH2
/ \ / \
H2C – CH2 H2C CH2 H2C CH2

H2C – CH2 H2C CH2
\ /
CH

Siklobutana Siklopentana Sikloheksana
Pada umumnya,senyawa hidrokarbon siklik dalam minyak bumi berupa campuran siklopentana dan sikloheksana yang disebut naften.Dalam minyak bumi,antarmolekul siklik tersebut kadang-kadang bergabung membentuk molekul yang terdiri atas berapa senyawa siklik.

3.Senyawa Hidrokarbon Alifatik Rantai Bercabang
Termasuk kedalam senyawa hidrokarbon ini adalah senyawa golongan isoalkana atau isoparafin.Jumlah senyawa hidrokarbon ini tidak sebanyak senyawa hidrokarbon alifatik
Rantai lurus dan senyawa hidrokarbon bentuk siklik.

CH
CH3 – CH – CH3
CH3 -CH-CH2 -C-CH3
CH
CH3 CH3
Isobutana Isooktana
4.Senyawa Hidrokarbon Aromatik
Senyawa hidrokarbon aromatik merupakan senyawa hidrokarbon yang berbentuk siklik segi enam,berikatan rangkap dua selang-seling,dan merupakan senyawa hidrokarbon tak jenuh.Jumlah senyawa hidrokarbon jenis ini paling sedikit diantara jenis lainnya.Pada umumnya,senyawa hidrokarbon aromatik ini terdapat dalam minyak bumi yang memiliki jumlah atom C besar.Tabel berikut menyatakan komposisi senyawa hidrokarbon dalam beberapa komponen minyak bumi.
Komposisi Senyawa Hidrokarbon dalam Beberapa Komponen Minyak Bumi
Komponen
Minyak Bumi % Volume
n-alkana Sikloalkana Isoalakana Aromatik Residu
Gas 100 - - - -
Bensin 38 43 20 9 -
Kerosin 23 43 15 19 -
Solar 22 48 9 21 -
Minyak Pelumas 16 52 6 24 -
Residu 13 51 1 27 -

Kelas X.6 SMAN 5 Makassar


Itulah semua naggota anak 10.6

situs grup :http://www.facebook.com/photo.php?pid=30495293&id=1568092074#!/group.php?gid=128800606937

Arigatou :)

Kamis, 06 Mei 2010

Biodata Anggota kelompok



Selamat datang dalam Blog kami


blog ini adalah blog kelompok 2 dari SMA Negeri 5 Makassar




anggotanya yaitu : Mulkiah

okey watashiwa Uki
わたしは ウキ さん
あい して い イタチ
Minat:Baca Komik, Lompat Jauh hahahaahahah

Mengenai Saya:I am Itachi lover, Manga Lover, Japanese Lover dan Childish Over

Film Favorit:Manga Naruto dan sejenisnya

Tanggal lahir : 9 september 1994

No.Urut:14

Musik Favorit: Musik Japanese

Buku Favorit:Manga, novel nguras otak


Melania Sanda lembang

Ainun Jariah


Nurul Hijriyani




Irwan ibrahim


Andi nasrul

Minat:Main bola

Mengenai Saya:saya suka baca buku

Film Favorit:action

Tanggal lahir : 18 Juni 1994
No.Urut: 20

Musik Favorit: rock

Buku Favorit:serlock Holmes

Muhammad Zaki Fauzi Rahman Rahim